Non-archimedean improper measures on homogeneous spaces

نویسندگان

چکیده

برای دانلود باید عضویت طلایی داشته باشید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Non-archimedean canonical measures on abelian varieties

For a closed d-dimensional subvariety X of an abelian variety A and a canonically metrized line bundle L on A, Chambert-Loir has introduced measures c1(L|X) ∧d on the Berkovich analytic space associated to A with respect to the discrete valuation of the ground field. In this paper, we give an explicit description of these canonical measures in terms of convex geometry. We use a generalization o...

متن کامل

Superstability of $m$-additive maps on complete non--Archimedean spaces

The stability problem of the functional equation was conjectured by Ulam and was solved by Hyers in the case of additive mapping. Baker et al. investigated the superstability of the functional equation from a vector space to real numbers. In this paper, we exhibit the superstability of $m$-additive maps on complete non--Archimedean spaces via a fixed point method raised by Diaz and Margolis.

متن کامل

Algebras of non-Archimedean measures on groups

Quasi-invariant measures with values in non-Archimedean fields on a group of diffeomorphisms were constructed for non-Archimedean manifolds M in [Lud96, Lud99t]. On non-Archimedean loop groups and semigroups they were provided in [Lud98s, Lud00a, Lud02b]. A Banach space over a local field also serves as the additive group and quasi-invariant measures on it were studied in [Lud03s2, Lud96c]. Thi...

متن کامل

‎On the two-wavelet localization operators on homogeneous spaces with relatively invariant measures

In ‎the present ‎paper, ‎we ‎introduce the ‎two-wavelet ‎localization ‎operator ‎for ‎the square ‎integrable ‎representation ‎of a‎ ‎homogeneous space‎ with respect to a relatively invariant measure. ‎We show that it is a bounded linear operator. We investigate ‎some ‎properties ‎of the ‎two-wavelet ‎localization ‎operator ‎and ‎show ‎that ‎it ‎is a‎ ‎compact ‎operator ‎and is ‎contained ‎in‎ a...

متن کامل

Tropical Dolbeault Cohomology of Non-archimedean Spaces

In this survey article, we discuss some recent progress on tropical Dolbeault cohomology of varieties over non-Archimedean fields, a new cohomology theory based on real forms defined by Chambert-Loir and Ducros.

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Indagationes Mathematicae (Proceedings)

سال: 1984

ISSN: 1385-7258

DOI: 10.1016/1385-7258(84)90024-6